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ABSTRACT

Distant supervision provides a means to create a large number of
weakly labeled data at low cost for relation classification. How-
ever, the resulting labeled instances are very noisy, containing data
with wrong labels. Many approaches have been proposed to se-
lect a subset of reliable instances for neural model training, but
they still suffer from noisy labeling problem or underutilization
of the weakly-labeled data. To better select more reliable training
instances, we introduce a small amount of manually labeled data as
reference to guide the selection process. In this paper, we propose
a meta-learning based approach, which learns to reweight noisy
training data under the guidance of reference data. As the clean
reference data is usually very small, we propose to augment it by dy-
namically distilling the most reliable elite instances from the noisy
data. Experiments on several datasets demonstrate that the refer-
ence data can effectively guide the selection of training data, and
our augmented approach consistently improves the performance
of relation classification comparing to the existing state-of-the-art
methods.
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1 INTRODUCTION

Relation classification (RC) aims to categorize the semantic relation
between two entities in a sentence into a set of predefined relation
types. The task is useful in various downstream applications, such as
information retrieval [33], question answering [36] and knowledge
graph completion [42]. Most recent methods tackle this problem
by training neural classification models in a supervised way [31,
40, 42, 43], demanding a large amount of labeled training data
which is difficult to acquire in practice. To alleviate the problem,
distant supervision (DS) was proposed to generate abundant weakly
labeled data [17, 32] by aligning facts in a knowledge base (KB) and
unlabeled sentences: If a fact in the KB states a relation between two
entities, then every sentence containing the same pair of entities
is labeled with that relation. This process inevitably introduces
many wrong labels when the sentences do not express the labeled
relation. As shown in Fig. 1, if BornIn and EmployedBy are the
relations between the entity pair (Barack Obama, United States) in
the KB, then every sentence mentioning the same entities will be
assigned both relation labels. This process generates many wrong
labels (0 in Fig. 1). Training a classifier with such highly noisy
labeled data will strongly limit the effectiveness of the classifier.
To alleviate the impact of wrong labels on the classifier, many
existing studies [3, 7, 8, 11, 13, 15, 23, 24, 40] try to select a subset


https://doi.org/10.1145/3340531.3412039
https://doi.org/10.1145/3340531.3412039
https://doi.org/10.1145/3340531.3412039
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3340531.3412039&domain=pdf&date_stamp=2020-10-19

Full Paper Track

KB={(Barack Obama, BornIn, United States),
(Barack Obama, EmployedBy , United States)}

Sentence Assigned labels Semen(?e-leve]
evaluation
Barack Obama is the 44th President of the United States. EmployedBy 1
Barack Obama is the 44th President of the United States. Bornln 0
Obama ran for the United States Senate in 2004. EmployedBy 0
Obama ran for the United States Senate in 2004. Bornln 0

Figure 1: Examples of sentence-level evaluation for DS la-
beled data, which evaluates each instance individually. “1”
and “0” denote the confidence score about the labelling qual-

ity.

of reliable instances for training. Some approaches [7, 13, 15, 40]
adopt multi-instance learning, which relaxes the relation label for
each sentence to a bag of sentences mentioning the same entity
pair and assumes that at least one sentence expresses the relation.
These approaches are often used in relation extraction, i.e. to iden-
tify possible relations between a pair of entities. However, for our
task of sentence-level relation classification (i.e. to judge if a given
sentence expresses a specific relation), they turn out to be inef-
fective [3, 8], because we have to judge on each of the instances
rather than a bag. From this perspective, sentence-level relation
classification is fine-grained and thus more difficult than relation
extraction. Some recent approaches [3, 5, 8, 23, 24, 41] perform
sentence-level evaluation. They evaluate the labeling quality of
each instance and select those deemed reliable for model training.
These approaches leverage the large amount of distantly labeled
instances to emerge strong supervision signals during the iterative
training process. As illustrated in the left part of Fig. 2, they usually
resort to reinforcement learning or adversarial learning to train an
instance selection model by receiving feedback from the classifier
or a manually crafted reward function. The basic assumption is
that most training instances are true, and thus the iterative learn-
ing process will help select coninAdent instances whose predicted
label by the learned classifier is consistent with its DS-generated
label. We put these approaches in the category of bootstrapping
approaches, i.e. an instance selection model emerges itself from the
noisy data gradually. Even though the bootstrapping process can
learn a good instance selection model, it may be easily trapped by
some common wrong instances. In addition, the instance selector
may fail to select some true instances that are different from the
frequent instances, thus underutilize the useful training data. Exist-
ing approaches either retain too many noisy training instances or
miss a lot of effective training data, limiting the capability of the
resulting classifier.

The above problem stems from the fact that the selector is trained
without further supervision signals. If we have some manually la-
beled instances that show good examples to express a specific rela-
tion in natural language, then the selection model can be guided by
them. So, our idea in this paper is to use a small set of manually an-
notated samples as “reference data” to guide the instance selection.
This corresponds to a new setting of DS for relation classification,
where a small set of reference data is available in addition to a large
amount of noisy DS data. This setting is realistic - in practice, it
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Figure 2: Bootstrapping process from noisy data (left) vs. our
meta-learning approach guided by reference data (right).

is not difficult to label a small set of data if this turns out to be
beneficial, which will be shown in our experiments.

In this paper, we focus on effective utilization of the small set
of reference data for relation classification using DS. We propose
a meta-learning framework, in which the reference data is used
to guide instance weighting at the meta-learning level. Then the
weighted instances are used to train a classifier. We use a spe-
cific meta-learning method similar to the online reweighting algo-
rithm [26, 28], which performs a meta gradient descent step to ad-
just the instance weights in order to minimize the classification loss
on the clean reference data. This method is used because it can more
effectively leverage clean reference data than existing reinforce-
ment learning or adversarial learning approaches [3, 5, 23, 24, 41].

As we assume that only a small set of clean data is available, we
may have the mode collapse issues: it may over-boost the noisy
samples that agree with the reference samples, leading the classifier
to collapse into the existing mode and thus a poor generalization
capability. To relieve this issue, we propose to augment the clean
reference data by a set of noisy instances deemed confident. We call
them “elite instances". At each training iteration, the elite instances
are used together with the clean data to guide a reweighting pro-
cess to assign weights to noisy instances, based on which training
instances are selected. The process can combines the strengths of
bootstrapping from noisy data and guidance by reference data. The
whole training process iterates between reweighting and classifier
training as shown in the right side of Fig. 2.

The contributions in this work include:

e We propose an effective way to select noisy data for training,
guided by a small set of reference data.

e We adopt the meta-learning mechanism for DS relation classifica-
tion for the first time, and show its high effectiveness compared
to other alternative methods.

e Our approach combines the strengths of supervision and boot-
strapping to create a larger set of reference data for meta-learning.

2 METHODOLOGY

Problem Definition The relation classification problem can be
formulated as follows: Let Dy;i, be a set of sentence-relation pairs
{(xi, r,-)}fi 1» Where r; is a relation label created by distant supervi-
sion. The goal is to train a relation classification model & parame-
terized by 0 that can predict the relation of a new sentence x; from
test data Diegt, i.e., compute the probability Pp(rj|x;). Formally,
the task of learning under distant supervision is to minimize the
empirical risk on training data as follows:



Full Paper Track

0" = argmin (B, )-py,,,, (20 ().1)))

= argmin Z PDyeain 6 T)E( Py (), 7)

0 \& (1
N
~ argmin wil(®g(xi),7i) |-
) ; 1 1 A

In the last step, the training data is used with their weights {w; }ﬁ\i 1
representing the labeling quality.

The selection of good instances is a key problem in DS learning.
Different from the previous approaches [3, 5, 23, 24, 41], we assume
that we have a small set of clean reference data D, that can be
used to guide the selection or weighting process.

2.1 Overview of the Proposed Approach

We propose to adopt a weighting schema of training samples to
dynamically reweight noisy instances in Dy,i under the guidance
of Dy.r. We achieve this goal by proposing an approach based on
meta-learning, which aims at minimizing the meta-objective:

w" = argmin MetaObjective(®g, Dyef) 2)
w

The principle of our meta-learning is as follows: we want the
classifier trained with the weighted instances to minimize the loss
on the reference data. Note that @y is a function of w since w affects
the optimization of § as shown in Eq. 1. We will provide details
about this instance reweighting (meta-reweighting) process later.

As we mentioned earlier, we assume that we only have a small set
of reference data. A typical consequence is mode collapse, i.e., the
selected training instances (assigned high weights) become similar
to the reference data, leading to a model with narrow coverage. To
cope with this challenge, we increase the coverage of the reference
data by augmenting it with some highly reliable instances from the
noisy set, which we call “elite data” or “elite instances”. The elite
data is expected to represent some strong patterns of a relation
among the noisy data, which may not be covered by the clean
reference data.

The framework of our proposed approach is shown in the Fig. 3,
consisting of iterations of robust classifier training based on
meta-reweighting and elite instance selection to augment refer-
ence data (to extend reliable supervision signals). Details are given
in the following subsections.

2.2 Robust Classifier Training by Meta
Learning

Generally, the goal of machine learning is to find a model & with
the best parameter 6 to minimize the empirical risk as in Eq. 1.
In the DS setting, this means to weight the training instances (w)
to train a better model ®. We propose to leverage the small set
Dt for this purpose using meta-learning based sample reweight-
ing algorithm [26, 28]. As shown in the Fig. 4, our meta-learning
algorithm involves two optimization process: the outer loop for
instance reweighting and the inner loop for classifier training. As
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Figure 3: Framework overview. At each training epoch ¢, we
learn to reweight noisy Dy,in according to a meta-objective
with respect to the augmented reference data. The classifier
®(0") is updated with the weighted instances. Afterwards,
we select a set of elite instances to augment the clean ref-

erence data to D:i?l) for the next epoch.

the outer loop is optimized for better inner loop, the classifier train-
ing is embedded in the instance reweighting process. That is, at
each iteration,we start with the classifier training with weighted
training data, and then optimize w based on the updated classi-
fier with respect to the meta-objective (on reference data). Once
w is optimized, we use it to update the model ® in the classifier
training. The whole training process iterates between the instance
reweighting and classifier training.

To increase the training efficiency, we adopt the online reweight-
ing strategy [26], which dynamically learns the instances weights
for a mini-batch of training data by a single optimization step. In
the instance reweighting phase, given a mini batch of training
instances Dprain € Dirain and weight vector w (which may be
initialized by perturbing [10]), we define the weighted training loss
as follows:

Lintrain (0(w)) =

2

(x1,7i) €Dmtrain

wil(@g(xi), 1i). 3

We update 0(w) to a temporary version O(w) as Eq. 4, which is only
used to optimize instance weights:

O(w) = 0 = 1t 9 (Luntrain (O(w)) (@)
Based on such a fixed classifier ® d(w)’ the meta-objective is defined

as the loss on the reference data:

MetaObjective (é(w)) 2 Lref (é(w))
=D U@, &),

(x1,7) €EDres

©)
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Figure 4: Schematic diagram of meta-learning algorithm for
robust classifier training, which iterates between instance
reweighting and classifier training. The instance reweight-
ing process contains extra classifier training process.

reference data

By applying gradient descent to minimize such meta-objective, we
can optimize w through second order derivatives. Thus, we get our
new weight vector as:

w" = argmin MetaObjective (é(w)) (6)

wiw>0
With the learned instance weights w*, we can update the classi-
fier according to Eq. 7. This phase is the actual classifier training
phase:
0"=0-n:Vg w; {(®g(xi), i) ™)

2

(x1,7:) €Dmtrain

The updated 6’ are used as the parameters of @ in the next iteration.

It is worth noting that w is optimized to make the classifier
perform better on Dy.f as Eq. 6 expresses. Further analysis [26, 28]
shows that the training instances whose gradient directions are
similar to the gradient direction of D, will be assigned with high
weights, otherwise low weights. With such bilevel optimization
process, we could maximize the role of reference data for denoising.

2.3 Enhancing Reference Data by Elite
Instances

The small amount of clean reference data could provide limited
guidance when participating in the meta-objective, resulting in
poor generalization capability. To overcome this issue, we augment
the reference data by distilled elite instances from the noisy data.
The elite instances are those that are attributed to the highest
classification sores, thus are highly reliable. The elite instances
are “elected” from the noisy data by the classifier they trained. They
are thus the most representative likely-true instances among the
noisy data. The elite instances are intended to provide additional
reliable supervision signals to the reference data, as we explained
earlier.

2.3.1 Enhancement strategy. We propose to augment the reference
set dynamically, i.e., we evaluate training data at each epoch and
select top-scored instances to expand the original reference set D¢
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to D7 ;. Since the top-scored instances vary for each training epoch,
we are able to leverage diverse elite instances to mitigate the “mode
collapse issue”.

We propose two strategies to compute the confidence score of
labeling quality based on respectively the instance weighting (sw)
and classification probability (sp). In the first strategy, we use the
normalized instance weight determined with respect to the clean
reference data (the same as in meta-learning) as the confidence

score, defined as sw; = ZL‘:/ Since the instances assigned with high
J

weights have gradient directions similar to the reference data [26,
28], sw may help select instances consistent with the reference data.

The second strategy uses the prediction probability by the clas-
sifier, defined by Eq. 8.

spi = Py (rilxi)

2 Po(rjlxj)
As the classifier is trained with a large amount of weighted noisy
data, the instances whose labels are scored high by the classifier are
more likely to be consistent with the common patterns emerged
from boosted training data. The advantage of using sp is that its
confidence score becomes more stable as the classifier training
converges, while the confidence score by sw is learnt online and
fluctuates across training epochs. We further examine this in Sec-
tion 2.3.2.

With the confidence score s; (either sw; or sp;), we rank and
select instances from top to bottom. We select the top-scored in-
stances for each type of relation, proportionally to the number of
that relation in Dy.¢. Note that we follow the same relation distri-
bution as Dy.f in order to avoid introducing unexpected bias from
unbalanced relation distribution of Dyyyip.

Formally, let RE be the set of target relation types excluding the
not-the-target relation typelg n, be the number of selected instances
for relation r, set as k#{(x;, ;)| (xi,7i) € Dyef, ri = r} 2, where k is
the expansion ratio. Then the expanded reference data is as follows:

Dl = | J {@enlsi = 7(2). (xi7) € Dyain). - 9)
reRE

®)

where 7(n,) is the minimum confidence score of top n,.
Finally, the augmented reference data is the union of the original

D(t) The meta-

one and the expanded one, i.e., D:g) = Dref U Dey)-

objective in Eq. 5 is enhanced as:
MetaObjective (0(w)) = Lyef (6(w)) + fLexp (0(w)),  (10)

where f is a factor to control the influence of expanded reference
data for meta-objective.

2.3.2  Robust exploitation phase. The aforementioned strategy en-
hances instance reweighting, but may still suffer from wrong labels
in the expanded reference set. To further improve the quality of
selected elite instances, we propose an additional exploitation strat-
egy based on the assumption that the more times an instance has
been selected as elite instance in different epochs, the more likely
it is true. Since confidence scores among different training epochs
are incomparable, we design an accumulate score from the ranking

!We do not select instances of not-the-target type, i.e. the negative training instances,
since they are dominant in the Diyyin, Dyer. Selecting such instances has been empiri-
cally found useless in our preliminary experiments.

2#{.} is the function of counting the number of a set.
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order to record the historical selection information. The accumula-
tive score sa; for each training instance (x;, r;) at training epoch ¢
is defined as follows:

= 0, ift=0
sa;’ = { (t-1) (t) (11)

ysa; +sr; 7, otherwise

where y is a parameter used to decay the influence of distant his-

(¥)

torical evaluations, and sr;"’ is the ranking score at epoch ¢:

_ 1
T 1 4 eldxi—n,

ST (12)
where Idx; is its rank according to sw; or sp; from top to bottom.
We apply the exploitation strategy only after a certain number
of training epochs (in our experiments, half of the total training
epochs) in order to allow for more diversified selection at the be-

ginning (aka exploration).

2.4 Algorithm

We design an iterative algorithm for model training, as shown in
Algorithm 1. At the training epoch ¢, we compute the current con-
fidence score sp; (line 4) (which could also be sw;) and update it
to the accumulative score sa; (line 5), which is used in exploita-
tion phase. Then we select top-scored instances according to s; to
construct expanded reference set (line 8).

ALGORITHM 1: Our approach for robust classifier training
from noisy data.

Require: Noisy training dataset Diy,in;
Clean reference dataset Dyef;
Classifier ® parameterized by 0
Ensure: 91
1: Pre-train ® (with parameters 9(0));
2: for epocht =1to L do
3. for each (xj,r;) in Dyy,in do

4 Compute confidence score sp; with o(0™1)) as Eq. 8.
5 Accumulate ranking score sagt) as Eq. 11
6: Set final score s; as sagt) if in exploitation phase

otherwise sp; (Section. 2.3.2)
7. end for
8:  Select top-scored instances based on s; to obtain expanded

reference set Dg(i) (Section 2.3.1)

9:  for each mini batch in Dy, do
(t)

10: Calculate meta-objective with the loss on Dyef and Dey,
as Eq. 10.

11 Optimize w* based on the meta-objective as Eq. 6.

12: Use w* to update classifier ®(0) as Eq. 7

13:  end for

14: end for

Then the augmented reference data is applied to the online
reweighting algorithm, which updates w* and 6 using mini-batches
of training data (lines 11 - 12), similar to the existing meta-reweighting
approach [26, 28].
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3 EXPERIMENTAL SETUP
3.1 Datasets

We evaluate our approach on two widely-used DS datasets for
relation extraction/classification: Wiki-KBP and NYT. To evaluate
our models precisely, we construct a new version of Wiki-KBP and
adopt a manually labeled test set for NYT (see explanations below).
The statistics about the datasets are presented in Table 1.

Table 1: Statistics of the datasets used in our experiments.

Datasets #Relation types® #Instances #Positive instances

. Training 6 151,091 38,922
Wiki-RBP  rgt 6 4,168 1,075
Training 53 522,611 136,947

NYT Test 17 2,040 684

*Including the Not-Target-Type for negative instances.

Wiki-KBP The training dataset was constructed by aligning Free-
base facts with English Wikipedia corpus [14]. The commonly-used
test set was manually annotated from the 2013 KBP corpus [2].
However, the relation types in the test set do not always match
with those in the training set - some test relation types have no or
only one training instance. We thus removed these relation types.

The resulting test set contains a very small number of positive
instances (165) and their proportion in the test set is only about 0.08.
To have more labeled sentences of target relations for evaluating
classifiers, we increase the number of positive instances in the test
set by merging another manually annotated dataset - TACRED [42],
whose sentences are also derived from the KBP corpus.

Specifically, we removed the relation with only one instance
in the training set (per:countries_of residence), and obtained the
modified training set with 5 actual relations - per:country_of_death,
per:country_of_birth, per:children, per:parents, per:religion, and a
special relation not-target-type (None) for negative instances. Then,
we merged the positive instances of these 5 types from the original
test set 3 and the TACRED dataset *. To make sure that our test
set has a similar proportion of positive instances as the training
set, we randomly sampled 3093 negative instances (“no_relation”)
from the TACRED dataset. The resulting training and test sets are
as shown in Table 1.

NYT This dataset was generated by aligning news corpus from
New York Times (NYT)® and relation facts in Freebase [27]. Most
previous work used held-out evaluation, where the training set and
test set were heuristically annotated based on disjoint sets of the
freebase facts. However, the DS-generated labels could be wrong
and the two sets are noisy. To evaluate the relation classification
at sentence level, we used the original training set and a manually
annotated test set provided by Jiang et al. [9].

The clean reference data is constructed as follows: For Wiki-
KBP, to better evaluate our models, we split the original test dataset
into a validation set and a test set. We fixed the test set and ran-
domly sampled 100 instances from the clean validation set as the
reference data. For NYT, since the manually labeled data is very
Shttps://github.com/shanzhenren/CoType

*https://nlp.stanford.edu/projects/tacred/
Shttp://iesl.cs.umass.edu/riedel/ecml/
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small, we sampled 10% of the training data as validation set and left
the rest as the actual training set. To keep the original setting in
which no entity pair overlaps between the training and test sets,
we randomly sampled one fifth entity pairs from the test dataset
and extracted the corresponding sentences (about 400 instances)
as the reference data. The remaining test data was used as actual
test set.

Note that we set the minimal size of reference data by making
sure that there is at least one instance for each relation in the
reference set. We randomly sampled five sets of reference data and
fixed them to conduct our experiments. All the reported average
results for baselines and analysis experiments are based on the
same reference sets.

3.2 Compared models

3.2.1 Our model. Based on the model-agnostic meta-learning al-
gorithm, our approach can be applied to any neural network archi-
tectures for DS relation classification.

In this work, we adopt the Piecewise Convolutional Neural Net-
work (PCNN) [39] as base model to compare our approach with
other denoising approaches. This model has been widely used for
relation classification with DS [7, 13, 34, 39] and been proven to
perform better than CNN models [9]. The PCNN model contains
an input layer which concatenates the word embedding and the
position embedding, a convolutional layer, a piecewise max pooling
layer, and a softmax layer. More details can be found in [39].

Based on the general meta-learning mechanism described in
section 2.2, we build our approach on top of learning to reweight
examples (L2RW) [26] algorithm. It regards instances weights as
a meta-parameter vector implicitly learned and does not require
extra hyper-parameter tuning. Instance weights can also be learned
by a parameterized module within the meta-learning framework,
such as a multilayer perceptron network (Meta-Weight-Net) [28].
We will not examine it in this paper.

We measure the effectiveness of two strategies for elite instance
selection, i.e. sw (by online-learnt instance weights) and sp (by
prediction probability from the classifier). Then we use sp as the
default to select elite instances for detailed analysis in section 4.2.

3.2.2 Baselines. We compare our approach with previous repre-
sentative and state-of-the-art instance selection approaches in DS
relation classification, including:

o PCNN+ATT [13] is a classical bag-level instance weighting ap-
proach. It assigns attention weights to each instance within a
bag according to their relevance to the bag label, and thus down-
weights the relatively noisy instances.

PCNN+RL [24] adopts reinforcement learning to generate the
false-positive indicator to recognize false positives, and then
redistributes them to the negative set to obtain a new cleaned
dataset.

PCNN+DSGAN [23] adopts adversarial learning to train a gen-
erator to recognize true positive instances, and then redistributes
the remaining false positives to the negative set to obtain a new
cleaned dataset.

ARNOR [8] is previous state-of-the-art model for DS relation
classification. It starts the model training with reliable instances
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selected by a set of frequent relation patterns, and then adds
patterns by bootstrapping.

We apply the reference data to enhance existing models as fol-
lows: 1) for RL [24] and DSGAN [23], we compute reward on ref-
erence data with the same reward function and average it with
previous rewards to obtain final feedback for instance selection;
2) for ARNOR [8], we add the relation patterns extracted from the
reference set to their pattern collections.

We compare with the following baseline models that use extra
clean data:

o PCNN+L2RW ([26] is the learning to reweight samples algo-
rithm that resorts to a clean unbiased dataset to tackle the biased
training set problem.

o PCNN+BA [37] is a bias adjustment approach that uses the extra
clean data to help relieve the label distribution shift from DS
training data and manually annotated test data. We use their
best-performing BA-Fix model.

3.3 Implementation Details

We use the same word embedings for baselines, i.e., the pre-trained
GloVe [21] embedding® for Wiki-KBP and the 50-dimensional word
embedding file” released by Lin et al. [13] for NYT. The correspond-
ing position embeddings are set as 30 dimensions for Wiki-KBP
and 5 dimensions for NYT. The number of convolution filter for
PCNN model is 230, and the filter window size is 3.

For our enhanced reweighting strategy, we select k times elite
instances compared to the original reference data. k falls between 2
and 3, depending on the dataset. Parameter f is generally set as 1,
and adjusted as 0.1 for sw during the exploitation phase. y is set as
0.97. For model training, we adopt the SGD optimizer and set the
maximum training epoch as 25. The batch size for training set is
160 and we use all the reference data for every reweighting step due
to its small size. To speed up the training process, we linearly warm
up the learning rate to a maximum value of 0.1 within 2 epochs,
and linearly decrease it to a minimum value of 0.001 used for the
last 5 epochs.

All the baselines were implemented with the source codes re-
leased by their authors except for ARNOR - ARNOR is not open-
sourced, so we reimplemented it based on an open implementation®,
which achieves comparable performance on the same dataset as
reported in [8]. Since ARNOR starts by selecting reliable instances
based on several frequent relation patterns, when training instances
are spread over many patterns (e.g. in Wiki-KBP), it fails to select
enough training data. Therefore, we increased the number of pat-
terns when applied it to our new dataset to increase its performance.

4 EVALUATION RESULTS

We use the same metrics as previous work [8, 42]: micro-averaged
Precision (Pre.), Recall (Rec.) and F1-score (F1).
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Table 2: Test set performance comparison of different models on the Wiki-KBP and NYT datasets. The five-time average
and standard deviation of test results are reported as percentage, and the best (bold) and second best (italic) F1 scores are

highlighted below.
Wiki-KBP NYT

Model Prec. Rec. F1 Prec. Rec. F1

PCNN* [39] 55.39 £3.75 34.37+4.14 42.16 +£1.97 46.93 £ 1.68 57.79 £5.01 51.66 £ 1.61
PCNN [39] 56.12 £3.33 33.38 +2.17 41.75 £ 0.98 47.88 £1.81 57.38 £3.75 52.12 £ 1.41
PCNN+ATT [13] 72.65+1.99 29.24 +1.31 41.69 £ 1.55 59.99 + 1.86 49.79 +2.29 54.36 £ 0.79
PCNN+RL [24] 57.64 +£2.41 38.79 +2.22 46.32 £ 1.65 48.72 £ 1.72 48.93 £ 2.11 48.78 £ 0.46
PCNN+DSGAN [23] | 59.86 +£5.65 38.54 +2.97 46.65 +£1.19 | 47.55+1.15 51.52+1.30 49.44 £ 0.75
ARNOR [8] 54.83 +£2.40 34.59 +2.20 42.35 £ 1.32 68.39 + 1.37 48.42 + 2.66 56.67 = 2.06
PCNN+BA [37] 58.86 £2.92 38.71 £ 2.60 46.59 £ 2.73 45.33 £ 0.86 58.06 +3.24 50.70 £ 1.21
PCNN+L2RW [26] 66.22 +£3.36 43.80+4.72 52.56 + 3.45 66.23 +4.17 53.05+ 3.40 58.56 + 2.12
OURS_sw 60.15+3.58 51.43+5.05 54.56" + 3.94 | 63.65+4.63 57.79 +4.54 60.38" + 2.54
OURS_sp 67.24 +3.10 46.65+4.13 54.98" £3.00 | 67.05+4.55 56.59+2.25 61.26" +1.98

% represents the model trained without using clean data.
* indicates statistically significant improvements over the L2RW (i.e. Wilcoxon signed-rank test with p < 0.05)°.

4.1 Overall Results

From the results shown in Table 2, the following observations can
be made:

e Our approach outperforms all the baselines on F1 score and
improves the F1 score of base PCNN model (line 2) by over 12%
on Wiki-KBP and 8% on NYT. This demonstrates the higher
effectiveness of our approach.

e L2RW and our approach outperform other instance selection
approaches. This shows that meta-learning based approaches are
able to make better use of the clean reference data than simply
adding it to the training data (PCNN in line 2), using its relation
patterns to extract training data (ARNOR), and computing reward
for instance selection under existing RL or DSGAN framework.
We also empirically found that fine-tuning the PCNN model with
clean reference data does not improve its performance and may
even decrease it when the size of clean reference data is too small.

e Both strategies of our approach improve L2ZRW by a statistically
significant margin. This shows that our enhanced strategy for
instance reweighting is beneficial. We observe that LZRW can sub-
stantially improve the precision of PCNN model on two datasets,
but decrease the recall on NYT. This observation confirms our
intuition that the small size of clean reference data may lead to
mode collapse. In contrast, with our enhanced strategy, the re-
call score and F1 score are consistently increased. This indicates
that the expanded reference data could enhance the reweighting
process to select more reliable training data with new patterns,
thus improving the generalization capability.

e The bias adjustment approach (PCNN+BA model) does not show
stable improvements on two datasets compared to the base model.
The F1 score of PCNN+BA is slightly decreased on NYT. We
explain this by the fact that the reference set and test set in NYT

Chttp://nlp.stanford.edu/data/glove.840B.300d.zip

https://github.com/thunlp/NRE

8https://github.com/HeYilong0316/ARNOR

9 We use the Wilcoxon signed-rank test to measure the paired results of the L2RW
and OURS based on the same set of clean reference data, and the t-test results are
computed with the scipy package.
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are divided based on entity pairs, and thus the reference set does
not provide exactly matched label distribution information. This
shows that the small set of clean reference data could provide
little information about label distribution, but our approach using
it for denoising makes a big difference.

4.2 Analysis and Discussion

4.2.1 Understanding the impact of reference data. Our approach
reweights the noisy training data under the guidance of augmented
reference data during the classifier training. To understand the
impact of reference data, we present the performance of classifiers
that are trained under three settings: with original noisy training
data (PCNN), with meta-reweighting algorithm guided by clean
reference data (L2RW), with meta-reweighting algorithm guided
by augmented reference data (OURS).

As shown in Fig 5, after several training epochs, PCNN model
quickly stagnates, while our approach and LZRW continue to im-
prove the performance with a large margin. This shows the impact
of the meta-reweighting for learning under DS. During the exploita-
tion phase (after epoch 12), our enhanced strategy exploits sa to
distill elite instances and uses them to guide the reweighting pro-
cess. We see steadily superior performance over LZRW. This is a
demonstration of the usefulness of elite instances.

During the exploration phase (before epoch 12), our augmenting
strategy selects elite instances according to the current confidence
score. Fig. 5 shows that it may perform poorer than LZRW some-
times. This may be due to the fact that the selected elite instances
may contain noise. As the training epoch increases, the well-trained
classifier and sa could help distill more reliable elite instances, thus
enhancing the reweighting. At the end, our final model after all the
training epochs is better than the others.

4.2.2  Impact of exploitation strategy. To reduce possible false in-
stances in elite data when using the current confidence score (i.e. sw
or sp) for selection, we propose to use accumulative score (sa) during
the exploitation phase (after epoch 12). To verify the effectiveness
of the exploitation strategy, we test our approach with and without
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Figure 5: Test set F1 score of three models on Wiki-KBP
at each epoch. The lines are drawn with average F1 scores
based on five reference sets.

using the accumulative score (with sa vs. w/o sa) and compare them
with the algorithm without enhancement strategy (L2RW). We ap-
ply meta-reweighting algorithms to train the PCNN model based on
one set of reference data and present their smoothed convergence
curves of 5-step moving averages on both the validation and test
sets of Wiki-KBP.

validation test
0.6 4 1
H e 7z e
g
3041 -
—
w
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& 044 1 —— with sa
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Figure 6: Smoothed convergence curves of F1 scores for mod-
els using sa or not on both validation set and test set of Wiki-
KBP. Results for two evaluation criteria sw and sp are pre-
sented respectively.

As shown in Fig. 6, sa is beneficial for both evaluation criteria (sw
or sp) and is especially important for sw. When sa is not used, the
performance of models using sw decreases at the end of training
process and may be even poorer than LZRW sometimes. This shows
that noise elite instances may be selected into the expanded refer-
ence set. When using sa, more reliable elite instances are selected.
The improvements are more steady. Note that when using other
reference sets the improvement margin over LZRW may vary, but
similar impact of the exploitation strategy is observed. The above
observation shows that the exploitation strategy that takes into
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account the historical evaluations is beneficial, especially for the
scenario where evaluation results fluctuate across epochs.

4.2.3 Size of the clean reference data. To see the impact of the size
of initial clean reference data on meta-reweighting algorithm, we
evaluate the performance of models when the size of clean reference
data is increased from the initial 100. Following the same setting,
we randomly sample the required reference set five times from
the validation set of Wiki-KBP, and present the average results
with LZRW and enhanced strategy in Fig. 7. We can see that when
the number of clean reference data increases, both our model and
L2RW can further improve the performance of the classifier. When
400 clean reference samples are available, our approach achieves
67.46% F1 score, which improves the basic PCNN model by more
than 25%. However, we also see that the gap with L2RW is reduced.
This suggests that our enhancement with elite data is more useful
when the size of the clean reference data is relatively small. We
explain this by the fact that when there is sufficient clean reference
data, it becomes less critical to further extend it because it already
has a quite good coverage of different relation patterns. So, our
enhancement is the most beneficial with a small amount of clean
reference data - the situation we target in this paper.

I Enhanced

. L2RW

_ | mm pCNN

61 62.81

67.46

54.98

400

Figure 7: Test set F1 score improvements compared with
PCNN model when different sizes of clean reference data are
used by our approach in Wiki-KBP dataset.

4.2.4 Case study. To better understand the impact of the meta-
reweighting algorithm and our expanded reference instances, we
analyze the case of one particular relation. The case shown in
Table 3 is an example extracted from our data for relation ‘/loca-
tion/administrative_division/country’ in NYT dataset, and Table 4
presents examples about sentence weighting and relation classifi-
cation. To make our analysis easier, we only consider using similar
words between two entities to match sentences, which is also re-
garded as the relation pattern in ARNOR [8].

Effectiveness of meta-reweighting. The relation patterns of
clean reference data are all used by ARNOR to select training data
with the same relation patterns, such as “entityl , in southern
entity2” in sentence 2. However, it fails to select some useful training
sentences, such as sentences 6 and 8, due to their different patterns.
In contrast, the reweighting algorithms (L2RW and OURS) can
assign a positive weight to sentence 6 which is similar to sentence
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Relation: /location/administrative_division/country

Dataset ID Sentences

... a company in Auroville, India
... on the school in Beslan, in southern Russia

Clean reference - s s .
... “cities on the rise”: Riga, Latvia

... for nearby Aleppo in Syria
... family’s zoo in Queensland, in northern Australia

(& BTN TSR N

Expanded reference

Table 3: Examples showing that our elite instances enrich
patterns of clean reference data.

Relation: /location/administrative_division/country

ID Sentences ARNOR L2RW OURS
6 .. tour in Chechnya crashed in southern Russia 0 0.002  0.003
7 ... in outback New_south_wales in Australia 1 0.0 0.004
8 .. Haryana and Uttar Pradesh in northern India ... 0 0.0 0.003
9 .. winter olympics in Albertville , France. X v v
10 ... a Philistine seaport at Ashkelon in Israel. vV X v
11 .. here in rural Bihar state in northern India ... X X vV

Table 4: Examples about sentence weighting (the upper part)
and relation classification (the lower part). We underline
similar relation expressions with the reference samples.

2. This confirms that the meta-reweighting algorithms could make
better use of the limited supervision signal (the clean reference data)
to boost relevant training data than using the shallow patterns to
select training data (ARNOR).

Effectiveness of expanded reference data. Table 3 shows
that the distilled elite instances from noisy training data could
provide not only similar relation expression (sentence 5 which is
similar to sentence 2), but also new expression patterns such as
“entityl in entity2” in sentence 4. This shows that the expanded
reference has the capability of covering more relation expression
cases.

Once our distilled elite instances (e.g. sentence 4 and sentence
5) are added into the reference set, sentences 6-8 in Table 4 are
weighted positively (i.e. selected as training instances for the classi-
fier) because they bear some similarity with the expanded reference
data. As a result, the test sentences 9-11 are all correctly classified.
This examples show the underlying reason why our enhancement
of reference data can improve the classification effectiveness.

5 RELATED WORK

5.1 Distantly Supervised Relation
Classification

Relation Classification is a fundamental task in natural language
processing. Neural network based models have achieved state-of-
the-art performance on this task [31, 40, 42, 43]. However, training
effective neural classifiers requires a large amount of labeled data,
which is usually hard to obtain. Distant supervision provides a way
to create massive weakly labeled data for relation classification but
the inevitable wrong labels harass reliable training [17, 27].

Most existing studies train relation classifier in DS by apply-
ing multi-instance learning (MIL) to reduce the impact of wrong
labels [6, 7, 13, 15, 27, 29, 40], which relaxes the relation label of
each instance to a bag of sentences containing the same entity
pair. Assuming at least one sentence within the bag expresses the
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target relation, MIL-based approaches train and test the relation
classification at bag level. They generally face two limitations. (1)
They still suffer from noises when all instances within a bag are
false [12, 23, 24]. Some recent studies mitigate this issue by incor-
porating complex attention modules among multi-bags [12, 38]. (2)
These MIL based approaches [11, 25] are designed and tested for
relation extraction, i.e. to extract all possible relations between a
pair of entities, and they are not suitable for sentence-level relation
prediction [3, 8]. In our work, we focus on relation classification at
sentence level. Nevertheless, we compared with one representative
MIL based approach [13] in the experiments.

Alternatively, some recent studies evaluate and select training
instances individually without relying on the at-least-one assump-
tion [3, 5, 8, 23, 24, 35, 41], and our work belongs to this family.
Previous approaches in this line rely only on the noisy training
data to learn instance selection and may suffer from noisy labeling
problem. In our work, we introduce a small amount of clean data to
guide the instance selection. In addition, previous studies either rely
on specific neural networks (e.g. LSTM) [8], or manually crafted
reward functions [3, 23, 24], while our approach adopts a model-
agnostic meta-learning algorithm without manually specifying any
specific form of reward functions or extra models, and thus is more
widely applicable in practice.

There are other studies that combine direct supervision and DS.
Pershina et al. [22] introduced a small amount of labeled data by
leveraging manually selected features from it, while we do not re-
quire manually selected features. Beltagy et al. [1] rely on large
additional supervised datasets [1] to help identify whether a sen-
tence expresses a relation, while we only use a small set of labeled
data as guidance.

A recent work [37] also use manually labeled data for relation
classification in DS. They use it to adjust the DS-trained models for
relieving the shifted label distribution problem. Our goal is different:
we use it to select reliable instances to train effective neural models.

5.2 Gradient-based Meta-learning

Meta-learning [30], also know as learning to learn, has made great
progress with recent advances of gradient-based meta-learning [4].
It has wide applications, such as model parameter initialization [4,
18], learning unsupervised update rules [16], learning sample weight-
ing schema [26, 28] and so on.

Some recent studies apply such meta-learning algorithm to learn
model parameters for specific relation classification tasks. They
focus on supervised relation classiifiAcation with limited supervi-
sion [20] or lifelong relation extraction [19], while we study DS-
based relation classification.

Two closely related approaches [26, 28] adopt the same gradient-
based meta-learning mechanism as ours to tackle the training set
bias issues. They use an ideal validation set which is clean, unbiased
and can be scaled to the desired amount to reduce the bias between
the training set and test set for image classification tasks. However,
this kind of validation set is difficult to obtain in reality. In the
DS relation classification task, the available clean reference data is
much less than the automatically generated DS training data (the
proportion is less than 0.08%), which might lead the model to mode
collapse issues. In contrast, by distilling highly confident instances
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from noisy data to augment the reference dataset, our approach
can leverage more reliable data during training and this effectively
improves the performance, as shown in our experiments (Fig 5).

6 CONCLUSION

In this paper, we proposed a meta-learning based approach for
distantly supervised relation classification under the guidance of a
small set of clean reference data. Our approach learns to reweight
instances by minimizing the loss on a dynamically augmented ref-
erence set. This process is able to leverage reliable training data and
enhances the generalization capability. Experimental results on two
distantly supervised datasets show that our approach outperforms
previous state-of-the-art noise reduction approaches as well as the
meta-reweighting baseline.

Since the reference data in our approach plays as a key role for
selecting reliable training instances, in the future, we plan to inves-
tigate active learning for annotating some representative reference
samples and extend our approach to large scale relation extrac-
tion. Other criteria, such as diversity, could also be incorporated in
instance selection.
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